The ring of integers of a function field and its primes

Holly Green
University College London
November 5th, 2021

Goal and motivation

Let $q=p^{r}$. A function field is
\square a finitely generated field K / \mathbb{F}_{q} of transcendence degree 1
$■ \mathbb{F}_{q}(C)$ for a smooth projective curve C / \mathbb{F}_{q} : in particular if $C: F(x, y)=0$ this is the fraction field of

$$
\mathbb{F}_{q}[x, y] /(F(x, y)) .
$$

E.g. $\quad C: y^{2}=x^{3}-x$ over $\mathbb{F}_{5} \Rightarrow \mathbb{F}_{5}(C)=\mathbb{F}_{5}\left(x, \sqrt{x^{3}-x}\right)$

$$
C:\left\{y^{2}=x^{3}-x, w^{2}=2\right\} \text { over } \mathbb{F}_{5} \Rightarrow \mathbb{F}_{5}(C)=\mathbb{F}_{25}\left(x, \sqrt{x^{3}-x}\right)
$$

Goal

What is the ring of integers of K, \mathcal{O}_{K} ? What are the primes in \mathcal{O}_{K} ?

Valuations on $\mathbb{F}_{q}(x)$

$$
\begin{aligned}
\mathbb{Q} & \hookleftarrow \mathbb{Z}=\bigcap_{p \text { prime }}\left\{x \in \mathbb{Q}:|x|_{p} \leq 1\right\} \\
\mathbb{F}_{q}(x)=\mathbb{F}_{q}\left(\mathbb{P}^{1}\right) & \hookleftarrow \mathbb{F}_{q}[x]
\end{aligned}
$$

Question

Is $\mathbb{F}_{q}[x]$ cut out by valuation bounds in the same way as \mathbb{Z} ?
Let $f \in \mathbb{F}_{q}(x)$ be a rational function on \mathbb{P}^{1}. Fix $P \in \mathbb{P}^{1}\left(\mathbb{F}_{q^{n}}\right)$ for some $n \geq 1$, define

$$
\operatorname{ord}_{P}(f):=\text { the order of vanishing of } f \text { at } P \text {. }
$$

Definition

The absolute value of f at P is $|f|_{P}=\left(q^{n}\right)^{-\operatorname{ord}_{P}(f)}$.

Absolute values on $\mathbb{F}_{q}(x)$

Let $f \in \mathbb{F}_{q}(x)=\mathbb{F}_{q}\left(\mathbb{P}^{1}\right)$ and fix $P \in \mathbb{P}^{1}\left(\mathbb{F}_{q^{n}}\right)$ for some $n \geq 1$.

Definition

The absolute value of f at P is $|f|_{P}=\left(q^{n}\right)^{-\operatorname{ord}_{P}(f)}$.
For example, if $f=x /\left(x^{2}-2\right)$ and $q=5$ then

$$
|f|_{0}=5^{-1}, \quad|f|_{ \pm \sqrt{2}}=25^{1}, \quad|f|_{\infty}=5^{-1}
$$

and $|f|_{P}=1$ for all other P.

Remarks

- This is a non-archimedean
- Varying P gives all absolute values on $\mathbb{F}_{q}(x)$
- $|f|_{P} \leq 1$ precisely when f does not have a pole at P
- $\left\{f \in \mathbb{F}_{q}(x):|f|_{P} \leq 1\right\}$ is a discrete valuation ring

The analogue of $\mathbb{Z} \hookrightarrow \mathbb{Q}$ for $\mathbb{F}_{q}\left(\mathbb{P}^{1}\right)$

Mirroring the case of number fields:

$$
\bigcap_{P \in \mathbb{P}^{1}\left(\overline{\mathbb{F}}_{q}\right)}\left\{f \in \mathbb{F}_{q}(x):|f|_{P} \leq 1\right\}=\left\{f \in \mathbb{F}_{q}(x): f \text { has no poles }\right\}
$$

but all we've constructed is $\mathbb{F}_{q} \hookrightarrow \mathbb{F}_{q}(x)$. To get a more exciting ring, we repeat but excluding a point P_{0}.

- $P_{0}=\infty$, we get $\left\{f \in \mathbb{F}_{q}(x): f\right.$ has no poles except possibly at $\left.\infty\right\}$. If $f=f_{1} / f_{2}$ then f_{2} must be constant so this subring is $\mathbb{F}_{q}[x]$.
$■ P_{0}=\sqrt{\alpha}$ for $\square \neq \alpha \in \mathbb{F}_{q}$, we get $\left\{f \in \mathbb{F}_{q}(x): f\right.$ has no poles except possibly at $\left.\sqrt{\alpha}\right\}$. If $f=f_{1} / f_{2}$ then we need $f_{2}=c\left(x^{2}-\alpha\right)^{i}$, but this also has a zero at $-\sqrt{\alpha}$! Instead we look at the subring $\{f$ has no poles except possibly at $\pm \sqrt{\alpha}\}=\mathbb{F}_{q}\left[1 /\left(x^{2}-\alpha\right), x /\left(x^{2}-\alpha\right)\right]$.

Definition

A closed point on C / \mathbb{F}_{q} is a Galois orbit of points in $C\left(\overline{\mathbb{F}}_{q}\right)$.

The ring of integers of $\mathbb{F}_{q}(C)$

Definition

Let $K=\mathbb{F}_{q}(C)$ and fix a finite set S of closed points on C. The ring of integers of K with respect to S is

$$
\mathcal{O}_{K, S}=\{f \in K: f \text { has no poles outside of } S\} .
$$

Suppose $C: y^{2}=x^{3}-x, p \neq 2$. Then $\mathbb{F}_{q}[x, y] /\left(y^{2}-x^{3}+x\right)=\left\{a(x)+y b(x): a, b \in \mathbb{F}_{q}[x]\right\}$.

- Letting $S=\{\infty\}$

$$
\mathcal{O}_{K, S}=\{f \in K: f \text { has no poles except possibly at } \infty\}=\mathbb{F}_{q}[x, y] /\left(y^{2}-x^{3}+x\right) .
$$

- Letting $S=\{(0,0)\}$, we change variables: $s=1 / x, t=y / x^{2}$ so that $C: t^{2}=s-s^{3}$.

$$
\mathcal{O}_{K, S}=\{f \in K: f \text { has no poles except possibly at }(x, y)=(0,0)\}=\mathbb{F}_{q}[s, t] /\left(t^{2}-s+s^{3}\right) .
$$

- Letting $S=\{(-1,0),(0,0),(1,0), \infty\}$

$$
\begin{aligned}
\mathcal{O}_{K, S} & =\{f \in K: f \text { has no poles except possibly at }(-1,0),(0,0),(1,0) \text { or } \infty\} \\
& =\mathbb{F}_{q}[x, y, 1 / y] /\left(y^{2}-x^{3}+x\right)
\end{aligned}
$$

Properties of $\mathcal{O}_{K, S}$

More generally, for smooth $C: F(x, y)=0$ over \mathbb{F}_{q}, taking $S=\{$ points at $\infty\}$ gives

$$
\mathcal{O}_{K, S}=\{f \in K: f \text { has no poles at affine points on } C\}=\mathbb{F}_{q}[x, y] /(F(x, y)) .
$$

A non-constant morphism $\phi: C \rightarrow \mathbb{P}^{1}$ induces an inclusion $\mathbb{F}_{q}[x] \hookrightarrow \mathbb{F}_{q}(C)$. Letting $S=\phi^{-1}(\infty)$, it can be shown that
$\mathcal{O}_{K, S}$ is the integral closure of $\mathbb{F}_{q}[x]$ in K.

The field of fractions of $\mathcal{O}_{K, S}$ is K
$\mathcal{O}_{K, S}$ is a Dedekind domain, i.e.
■ it's integrally closed in K : discrete valuation rings are integrally closed

- it's Noetherian
- every non-zero prime ideal is maximal: we'll see this soon

This structure allows us to factorize the ideals of $\mathcal{O}_{K, S}$ uniquely into primes.

The primes of $\mathcal{O}_{K, S}$

Recall that for $K=\mathbb{F}_{q}(C)$ and S a finite set of closed points

$$
\mathcal{O}_{K, S}=\{f \in K: f \text { has no poles outside of } S\}=\bigcap_{\text {closed } P \notin S}\left\{f \in K:|f|_{P} \leq 1\right\} \text {. }
$$

The unique maximal ideal of $\left\{f \in K:|f|_{P} \leq 1\right\}$ is

$$
\left\{f \in K:|f|_{P}<1\right\}=\{f \in K: f \text { has a zero at } P\} .
$$

From this we can construct a prime ideal of $\mathcal{O}_{K, S}$.

Definition

For a closed point $P \notin S$, the prime ideal of $\mathcal{O}_{K, S}$ at P is

$$
\mathfrak{p}_{P, S}:=\left\{f \in \mathcal{O}_{K, S}:|f|_{P}<1\right\}=\{f \in K: f \text { has a zero at } P \text { and no poles outside of } S\} \text {. }
$$

Sanity check: $\mathfrak{p}_{P, S}$ is prime as it's the kernel of the homomorphism

$$
\mathcal{O}_{K, S} \ni f \mapsto f(P) \in \overline{\mathbb{F}}_{q} .
$$

The primes of $\mathcal{O}_{K, S}$

Definition

For a closed point $P \notin S$, the prime ideal of $\mathcal{O}_{K, S}$ at P is

$$
\mathfrak{p}_{P, S}=\{f \in K: f \text { has a zero at } P \text { and no poles outside of } S\} .
$$

Proposition

Every prime ideal of $\mathcal{O}_{K, S}$ is of the form $\mathfrak{p}_{P, S}$ for a closed point $P \notin S$. There's a correspondence between the primes of $\mathcal{O}_{K, S}$ and the Galois orbits of points in $C\left(\overline{\mathbb{F}}_{q}\right)$ not in S.

When $C=\mathbb{P}^{1}$ and $S=\{\infty\}$ we saw that $\mathcal{O}_{K, S}=\mathbb{F}_{q}[x]$. Here the prime ideals are generated by irreducible elements. Let $q=5$, some irreducibles are

$$
\begin{array}{ccc}
x-\lambda\left(\lambda \in \mathbb{F}_{5}\right) & x^{2}-2 & x^{6}-2 \\
\lambda \in \mathbb{P}^{1}\left(\mathbb{F}_{5}\right) & \{ \pm \sqrt{2}\} \subset \mathbb{P}^{1}\left(\mathbb{F}_{25}\right) & \left\{\zeta \sqrt[6]{2}: \zeta^{6}=1\right\} \subset \mathbb{P}^{1}\left(\mathbb{F}_{15625}\right)
\end{array}
$$

From this description, we deduce that every prime ideal of $\mathcal{O}_{K, S}$ is maximal!

Example

Let $C: y^{2}=x^{3}-x, K=\mathbb{F}_{q}(C)$ and $S=\{\infty\}$. We saw previously that

$$
\mathcal{O}_{K, S}=\mathbb{F}_{q}[x, y] /\left(y^{2}-x^{3}+x\right), \quad \mathfrak{p}_{P, S}=\left\{f \in \mathcal{O}_{K, S}: f \text { has a zero at } P\right\}
$$

for closed $P \neq \infty$. Let $q=7: \mathfrak{p}_{(0,0), S}=(x, y)$ and $\mathfrak{p}_{\{(2, \pm \sqrt{-1})\}, S}=\left(x-2, x^{3}-x+1\right)$.
More generally,

- The primes in $\mathcal{O}_{K, S}$ correspond to primes \mathfrak{p} of $\mathbb{F}_{q}[x, y]$ containing $\left(y^{2}-x^{3}+x\right)$.
- Since (0$) \subset\left(y^{2}-x^{3}+x\right) \subseteq \mathfrak{p} \subseteq \mathfrak{m} \subset \mathbb{F}_{q}[x, y]$, we just determine the maximal ideals \mathfrak{m}.
- A generalisation of Hilbert's Nullstellensatz says: the maximal ideals of $\mathbb{F}_{q}[x, y]$ arise from points $P=\left(p_{x}, p_{y}\right) \in \overline{\mathbb{F}}_{q}^{2}$. They are $\left(x-p_{x}, y-p_{y}\right) \cap \mathbb{F}_{q}[x, y]$.
- The maximal ideals for $P, P^{\prime} \in \overline{\mathbb{F}}_{q}^{2}$ are equal precisely when $\sigma\left(p_{x}\right)=p_{x}^{\prime}$ and $\sigma\left(p_{y}\right)=p_{y}^{\prime}$ for some $\sigma \in \operatorname{Gal}\left(\overline{\mathbb{F}}_{q} / \mathbb{F}_{q}\right)$.
- The prime ideals in $\mathcal{O}_{K, S}$ correspond to closed points $\neq \infty$ on C.

The Chinese Remainder Theorem

Fix $K=\mathbb{F}_{q}(C), S$ a finite set of closed points. We have a ring $\mathcal{O}_{K, S}$ with prime ideals $\mathfrak{p}_{P, S}$.

The Chinese Remainder Theorem

Let $P, Q \notin S$ be distinct closed points. There's an isomorphism

$$
\mathcal{O}_{K, S} /\left(\mathfrak{p}_{P, S} \cap \mathfrak{p}_{Q, S}\right) \longrightarrow \mathcal{O}_{K, S} / \mathfrak{p}_{P, S} \times \mathcal{O}_{K, S} / \mathfrak{p}_{Q, S}
$$

In particular, given $s, t \in \overline{\mathbb{F}}_{q}$ defined over the residue fields of P and Q respectively, there's some $f \in \mathcal{O}_{K, S}$ such that $f(P)=s$ and $f(Q)=t$.

For example, let $C: y^{2}=x^{3}-x$ over $\mathbb{F}_{7}, S=\{\infty\}, P=(0,0)$ and $Q=\{(2, \pm \sqrt{-1})\}$.
Let's find $f=a(x)+y b(x) \in \mathcal{O}_{K, S}\left(a, b \in \mathbb{F}_{7}[x]\right)$ with $f(P)=3$ and $f(Q)=2 \sqrt{-1}$.

$$
f(P)=3 \Rightarrow a(0)=3, \quad f(Q)=2 \sqrt{-1} \Rightarrow a(2)+\sqrt{-1} b(2)=2 \sqrt{-1}
$$

Can take $b(x)=x$ and $a(x)=2 x+3$ giving $f(x)=2 x+3+x y$.

Thank you for listening!

Any questions?

